Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 292
1.
J Neurosci ; 44(17)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38438258

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Acetylcholine , Cholecystokinin , Mice, Inbred C57BL , Theta Rhythm , Theta Rhythm/drug effects , Theta Rhythm/physiology , Animals , Male , Mice , Female , Acetylcholine/pharmacology , Acetylcholine/metabolism , Cholecystokinin/pharmacology , Cholecystokinin/metabolism , Interneurons/physiology , Interneurons/drug effects , Somatostatin/metabolism , Somatostatin/pharmacology , Amygdala/physiology , Amygdala/drug effects , Basolateral Nuclear Complex/physiology , Basolateral Nuclear Complex/drug effects , Nerve Net/physiology , Nerve Net/drug effects , Receptor, Muscarinic M3/physiology , Receptor, Muscarinic M3/metabolism , Parvalbumins/metabolism
2.
J Neurosci ; 43(47): 7902-7912, 2023 11 22.
Article En | MEDLINE | ID: mdl-37739795

Chronic alcohol exposure leads to a neuroinflammatory response involving activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and proinflammatory cytokine production. Acute ethanol (EtOH) exposure activates GABAergic synapses in the central and basolateral amygdala (BLA) ex vivo, but whether this rapid modulation of synaptic inhibition is because of an acute inflammatory response and alters anxiety-like behavior in male and female animals is not known. Here, we tested the hypotheses that acute EtOH facilitates inhibitory synaptic transmission in the BLA by activating the NLRP3 inflammasome-dependent acute inflammatory response, that the alcohol-induced increase in inhibition is cell type and sex dependent, and that acute EtOH in the BLA reduces anxiety-like behavior. Acute EtOH application at a binge-like concentration (22-44 mm) stimulated synaptic GABA release from putative parvalbumin (PV) interneurons onto BLA principal neurons in ex vivo brain slices from male, but not female, rats. The EtOH facilitation of synaptic inhibition was blocked by antagonists of the Toll-like receptor 4 (TLR4), the NLRP3 inflammasome, and interleukin-1 receptors, suggesting it was mediated by a rapid local neuroinflammatory response in the BLA. In vivo, bilateral injection of EtOH directly into the BLA produced an acute concentration-dependent reduction in anxiety-like behavior in male but not female rats. These findings demonstrate that acute EtOH in the BLA regulates anxiety-like behavior in a sex-dependent manner and suggest that this effect is associated with presynaptic facilitation of parvalbumin-expressing interneuron inputs to BLA principal neurons via a local NLRP3 inflammasome-dependent neuroimmune response.SIGNIFICANCE STATEMENT Chronic alcohol exposure produces a neuroinflammatory response, which contributes to alcohol-associated pathologies. Acute alcohol administration increases inhibitory synaptic signaling in the brain, but the mechanism for the rapid alcohol facilitation of inhibitory circuits is unknown. We found that acute ethanol at binge-like concentrations in the basolateral amygdala (BLA) facilitates GABA release from parvalbumin-expressing (PV) interneuron synapses onto principal neurons in ex vivo brain slices from male rats and that intra-BLA ethanol reduces anxiety-like behavior in vivo in male rats, but not female rats. The ethanol (EtOH) facilitation of inhibition in the BLA is mediated by Toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation and proinflammatory IL-1ß signaling, which suggests a rapid NLRP3 inflammasome-dependent neuroimmune cascade that plays a critical role in acute alcohol intoxication.


Anxiety , Basolateral Nuclear Complex , Ethanol , Animals , Female , Male , Rats , Anxiety/chemically induced , Anxiety/metabolism , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Ethanol/toxicity , gamma-Aminobutyric Acid/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotides/metabolism , Nucleotides/pharmacology , Parvalbumins/metabolism , Toll-Like Receptor 4/metabolism
3.
Psychopharmacology (Berl) ; 240(6): 1261-1273, 2023 Jun.
Article En | MEDLINE | ID: mdl-37055596

RATIONALE: The development and progression of alcohol use disorder (AUD) are widely viewed as maladaptive neuroplasticity. The transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) regulatory protein γ8 (TARP γ-8) is a molecular mechanism of neuroplasticity that has not been evaluated in AUD or other addictions. OBJECTIVE: To address this gap in knowledge, we evaluated the mechanistic role of TARP γ-8 bound AMPAR activity in the basolateral amygdala (BLA) and ventral hippocampus (vHPC) in the positive reinforcing effects of alcohol, which drive repetitive alcohol use throughout the course of AUD, in male C57BL/6 J mice. These brain regions were selected because they exhibit high levels of TARP γ-8 expression and send glutamate projections to the nucleus accumbens (NAc), which is a key nucleus in the brain reward pathway. METHODS AND RESULTS: Site-specific pharmacological inhibition of AMPARs bound to TARP γ-8 in the BLA via bilateral infusion of the selective negative modulator JNJ-55511118 (0-2 µg/µl/side) significantly decreased operant alcohol self-administration with no effect on sucrose self-administration in behavior-matched controls. Temporal analysis showed that reductions in alcohol-reinforced response rate occurred > 25 min after the onset of responding, consistent with a blunting of the positive reinforcing effects of alcohol in the absence of nonspecific behavioral effects. In contrast, inhibition of TARP γ-8 bound AMPARs in the vHPC selectively decreased sucrose self-administration with no effect on alcohol. CONCLUSIONS: This study reveals a novel brain region-specific role of TARP γ-8 bound AMPARs as a molecular mechanism of the positive reinforcing effects of alcohol and non-drug rewards.


Alcoholism , Basolateral Nuclear Complex , Calcium Channels , Ethanol , Hippocampus , Receptors, AMPA , Sucrose , Animals , Male , Mice , Alcoholism/etiology , Alcoholism/metabolism , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Calcium Channels/metabolism , Ethanol/administration & dosage , Ethanol/pharmacology , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Locomotion/drug effects , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Nucleus Accumbens/metabolism , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Reinforcement, Psychology , Reward , Sucrose/administration & dosage , Sucrose/pharmacology
4.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Article En | MEDLINE | ID: mdl-35622887

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Basolateral Nuclear Complex , Emotions , Insular Cortex , Neural Inhibition , Recognition, Psychology , Visual Perception , Animals , Arousal , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Emotions/drug effects , Emotions/physiology , GABA Agonists/pharmacology , Insular Cortex/drug effects , Insular Cortex/physiology , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Norepinephrine/administration & dosage , Norepinephrine/pharmacology , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Visual Perception/physiology
5.
Behav Brain Res ; 416: 113572, 2022 01 07.
Article En | MEDLINE | ID: mdl-34499940

Social isolation and the disruption of established social bonds contribute to several physical and psychological health issues. Animal models are a useful tool for investigating consequences of social stress, including social isolation. The current study examined morphological changes in the basolateral amygdala (BLA) and affect-related behavioral and endocrine changes due to prolonged social isolation, using the translational prairie vole model (Microtus ochrogaster). Adult male prairie voles were either socially paired (control) or isolated from a same-sex sibling for 4 weeks. Following this 4-week period, a subset of animals (n = 6 per condition) underwent a series of behavioral tasks to assess affective, social, and stress-coping behaviors. Plasma was collected following the last behavioral task for stressor-induced endocrine assays. Brains were collected from a separate subset of animals (n = 10 per condition) following the 4-week social housing period for dendritic structure analyses in the BLA. Social isolation was associated with depressive- and anxiety-like behaviors, as well as elevated oxytocin reactivity following a social stressor. Social isolation was also associated with altered amount of dendritic material in the BLA, with an increase in spine density. These results provide further evidence that social isolation may lead to the development of affective disorders. Dysfunction in the oxytocin system and BLA remodeling may mediate these behavioral changes. Further research will promote an understanding of the connections between oxytocin function and structural changes in the BLA in the context of social stress. This research can facilitate novel treatments for alleviating or preventing behavioral and physiological consequences of social stressors in humans.


Arvicolinae/physiology , Basolateral Nuclear Complex/drug effects , Oxytocin/pharmacology , Social Isolation/psychology , Stress, Psychological/physiopathology , Task Performance and Analysis , Animals , Behavior, Animal/physiology , Corticosterone/blood , Dendrites , Male , Neurosecretory Systems/drug effects
6.
Acta Pharmacol Sin ; 43(2): 260-272, 2022 Feb.
Article En | MEDLINE | ID: mdl-33927360

Individual differences in the development of uncontrollable fear in response to traumatic stressors have been observed in clinic, but the underlying mechanisms remain unknown. In the present study we first conducted a meta-analysis of published clinical data and found that malondialdehyde, an oxidative stress biomarker, was significantly elevated in the blood of patients with fear-related anxiety disorders. We then carried out experimental study in rats subjected to fear conditioning. We showed that reestablishing redox homeostasis in basolateral amygdale (BLA) after exposure to fear stressors determined the capacity of learned fear inhibition. Intra-BLA infusion of buthionine sulfoximine (BSO) to deplete the most important endogenous antioxidant glutathione (GSH) blocked fear extinction, whereas intra-BLA infusion of dithiothreitol or N-acetylcysteine (a precursor of GSH) facilitated extinction. In electrophysiological studies conducted on transverse slices, we showed that fear stressors induced redox-dependent inhibition of NMDAR-mediated synaptic function, which was rescued by extinction learning or reducing agents. Our results reveal a novel pharmacological strategy for reversing impaired fear inhibition and highlight the role of GSH in the treatment of psychiatric disorders.


Acetylcysteine/pharmacology , Basolateral Nuclear Complex/drug effects , Extinction, Psychological/drug effects , Fear/drug effects , Glutathione/metabolism , Memory/drug effects , Animals , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/physiology , Buthionine Sulfoximine/pharmacology , Conditioning, Classical , Cues , Dithiothreitol/pharmacology , Glutathione/physiology , Homeostasis/drug effects , Male , Rats , Rats, Sprague-Dawley
7.
Article En | MEDLINE | ID: mdl-34929324

Drug-related memory can be transiently destabilized by memory retrieval, after which memories are reconsolidated. Neurons in the basolateral amygdala (BLA) that are activated by emotional information may be one of the key mechanisms underlying this destabilization. However, the specific neural circuits underlying this destabilization process remain unknown. Because BLA receives noradrenergic inputs from the nucleus tractus solitarius (NTS) and locus coeruleus (LC), we studied the role of afferent projections into the BLA in the destabilization of morphine self-administration memory in rats. We first showed that morphine (unconditioned stimulus, US) + morphine-associated conditioned stimuli (CS) exposure, rather than CS exposure alone, destabilized morphine self-administration memory. Then, we measured projection-specific activation after the US + CS or CS retrieval test using c-fos (activity marker)-labeling in projection areas. Compared with CS exposure, we found that US + CS exposure induced more neuronal activation in the BLA and NTS but not in the LC. Next, we determined the effects of chemogenetic inactivation or activation of NTS or LC projections to BLA (NTS â†’ BLA or LC â†’ BLA) on this destabilization. We found that NTS â†’ BLA, but not LC â†’ BLA inactivation during memory retrieval, prevented memory destabilization induced by US + CS exposure. Furthermore, NTS â†’ BLA, but not LC â†’ BLA activation during CS retrieval induced destabilization. Thus, our results identify a specific neural circuit underlying the transformation of a stable opiate-associated memory into an unstable memory and subsequently guide reconsolidation.


Analgesics, Opioid/pharmacology , Basolateral Nuclear Complex/drug effects , Locus Coeruleus/physiology , Memory/drug effects , Morphine/pharmacology , Solitary Nucleus/physiology , Animals , Conditioning, Classical/drug effects , Male , Norepinephrine , Rats , Self Administration
8.
Neurosci Lett ; 766: 136353, 2022 01 01.
Article En | MEDLINE | ID: mdl-34793899

On the basis of amyloid ß (Aß) peptides as triggers in atrophy of structures in the limbic system, here we postulated that Aß1-42-induced intracellular Zn2+ toxicity in the basolateral amygdala contributes to conditioned fear memory. Aß1-42 increased intracellular Zn2+ level in the amygdala after local injection of Aß1-42 into the basolateral amygdala, resulting in conditioned fear memory deficit via attenuated LTP at perforant pathway-basolateral amygdala synapses. Co-injection of isoproterenol, a beta-adrenergic receptor agonist, reduced Aß1-42-mediated increase in intracellular Zn2+, resulting in rescue of the memory deficit and attenuated LTP. The present study suggests that beta-adrenergic activity induced by isoproterenol in the basolateral amygdala rescues the impairment of conditioned fear memory by Aß1-42. The rescuing effect may be linked with reducing Aß1-42-induced intracellular Zn2+ toxicity. Furthermore, Aß1-42 injection into the basolateral amygdala also attenuated LTP at perforant pathway-dentate granule cell synapses, while co-injection of isoproterenol rescued it, suggesting that Aß1-42 toxicity in the basolateral amygdala also affects hippocampus-dependent memory. It is likely that beta-adrenergic receptor activation in the basolateral amygdala rescues the limbic system exposed to Aß1-42 toxicity.


Amyloid beta-Peptides/toxicity , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Isoproterenol/pharmacology , Zinc/metabolism , Animals , Conditioning, Classical , Fear , Male , Memory/drug effects , Memory Disorders/chemically induced , Memory Disorders/metabolism , Neurons/metabolism , Rats , Rats, Wistar
9.
Neurobiol Learn Mem ; 185: 107539, 2021 11.
Article En | MEDLINE | ID: mdl-34648950

The basolateral complex of the amygdala (BLA) is critically involved in modulation of memory by stress hormones. Noradrenergic activation of the BLA enhances memory consolidation and plays a necessary role in the enhancing or impairing effects of stress hormones on memory. The BLA is not only involved in the consolidation of aversive memories but can regulate appetitive memory formation as well. Extensive evidence suggests that the BLA is a modulatory structure that influences consolidation of arousing memories through modulation of plasticity and expression of plasticity-related genes, such as the activity regulated cytoskeletal-associated (Arc/Arg 3.1) protein, in efferent brain regions. ARC is an immediate early gene whose mRNA is localized to the dendrites and is necessary for hippocampus-dependent long-term potentiation and long-term memory formation. Post-training intra-BLA infusions of the ß-adrenoceptor agonist, clenbuterol, enhances memory for an aversive task and increases dorsal hippocampus ARC protein expression following training on that task. To examine whether this function of BLA noradrenergic signaling extends to the consolidation of appetitive memories, the present studies test the effect of post-training intra-BLA infusions of clenbuterol on memory for the appetitive conditioned place preference (CPP) task and for effects on ARC protein expression in hippocampal synapses. Additionally, the necessity of increased hippocampal ARC protein expression was also examined for long-term memory formation of the CPP task. Immediate post-training intra-BLA infusions of clenbuterol (4 ng/0.2 µL) significantly enhanced memory for the CPP task. This same memory enhancing treatment significantly increased ARC protein expression in dorsal, but not ventral, hippocampal synaptic fractions. Furthermore, immediate post-training intra-dorsal hippocampal infusions of Arc antisense oligodeoxynucleotides (ODNs), which reduce ARC protein expression, prevented long-term memory formation for the CPP task. These results suggest that noradrenergic activity in the BLA influences long-term memory for aversive and appetitive events in a similar manner and the role of the BLA is conserved across classes of memory. It also suggests that the influence of the BLA on hippocampal ARC protein expression and the role of hippocampal ARC protein expression are conserved across classes of emotionally arousing memories.


Adrenergic beta-Agonists/pharmacology , Basolateral Nuclear Complex/physiology , Clenbuterol/pharmacology , Conditioning, Operant/physiology , Cytoskeletal Proteins/physiology , Hippocampus/physiology , Memory/physiology , Nerve Tissue Proteins/physiology , Synapses/physiology , Animals , Basolateral Nuclear Complex/drug effects , Conditioning, Operant/drug effects , Cytoskeletal Proteins/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Long-Term Potentiation/physiology , Long-Term Potentiation/radiation effects , Male , Memory/drug effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley , Synapses/drug effects
10.
Neuropharmacology ; 200: 108819, 2021 12 01.
Article En | MEDLINE | ID: mdl-34610289

The basolateral amygdala (BLA) is a critical brain region for cocaine-memory reconsolidation. Corticotropin-releasing factor receptor type 1 (CRFR1) is densely expressed in the BLA, and CRFR1 stimulation can activate intra-cellular signaling cascades that mediate memory reconsolidation. Hence, we tested the hypothesis that BLA CRFR1 stimulation is necessary and sufficient for cocaine-memory reconsolidation. Using an instrumental model of drug relapse, male and female Sprague-Dawley rats received cocaine self-administration training in a distinct environmental context over 10 days followed by extinction training in a different context over 7 days. Next, rats were re-exposed to the cocaine-paired context for 15 min to initiate cocaine-memory retrieval and destabilization. Immediately or 6 h after this session, the rats received bilateral vehicle, antalarmin (CRFR1 antagonist; 500 ng/hemisphere), or corticotropin-releasing factor (CRF; 0.2, 30 or 500 ng/hemisphere) infusions into the BLA. Resulting changes in drug context-induced cocaine seeking (index of context-cocaine memory strength) were assessed three days later. Female rats self-administered more cocaine infusions and exhibited more extinction responding than males. Intra-BLA antalarmin treatment immediately after memory retrieval (i.e., when cocaine memories were labile), but not 6 h later (i.e., after memory reconsolidation), attenuated drug context-induced cocaine seeking at test independent of sex, relative to vehicle. Conversely, intra-BLA CRF treatment increased this behavior selectively in females, in a U-shaped dose-dependent fashion. In control experiments, a high (behaviorally ineffective) dose of CRF treatment did not reduce BLA CRFR1 cell-surface expression in females. Thus, BLA CRFR1 signaling is necessary and sufficient, in a sex-dependent manner, for regulating cocaine-memory strength.


Basolateral Nuclear Complex/drug effects , Cocaine-Related Disorders/pathology , Cocaine/pharmacology , Drug-Seeking Behavior/drug effects , Memory/drug effects , Receptors, Corticotropin-Releasing Hormone/drug effects , Animals , Corticotropin-Releasing Hormone/pharmacology , Dose-Response Relationship, Drug , Female , Male , Pyrimidines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley
11.
Neurosci Lett ; 764: 136201, 2021 11 01.
Article En | MEDLINE | ID: mdl-34469712

Basolateral amygdala (BLA) nuclei and their reciprocal connections with prelimbic (PL) and infralimbic (IL) regions of the medial prefrontal cortex (mPFC) are involved in the regulation of fear. 2-Heptanone is released in urine in stressed rats, and the olfactory detection of this odor produces immediate avoidance and alarm reactions and modifies neuronal activity in limbic connections in non-stressed rats. If 2-heptanone acts as a danger signal, then long-lasting actions would be expected. The aim of the present study was to investigate whether the forced inhalation of 2-heptanone modifies the response capacity of the BLA-mPFC circuit in the long term (48 h). Single-unit extracellular recordings were obtained from the PL and IL during electrical stimulation of the BLA (square-wave pulses; 1 ms, 20 µA, 0.3 Hz, 110 stimuli over a total duration of 360 s) in three groups of Wistar rats: control group (no sensory stimulation), unpredictable auditory stimulation group, and 2-heptanone stimulation group. A brief-latency (1 ms), short-duration (5 ms) paucisynaptic response followed BLA stimulation and was unaffected by any sensorial stimulation. The paucisynaptic response was followed by a mostly inhibitory and long-lasting (>750 ms) afterdischarge in the control and auditory stimulation groups. In the 2-heptanone group, the inhibitory afterdischarge shifted to an excitatory afterdischarge after ∼250 ms in the PL and after ∼500 ms in the IL. Importantly, the rats that were included in this study were born in local housing facilities. Thus, these animals were never in contact with predators and instead in contact with only conspecifics. These results indicate that the forced inhalation of 2-heptanone is able to modify BLA-mPFC responsivity in the long term. 2-Heptanone decreases inhibitory control of the amygdala over mPFC activity. Disinhibition of the mPFC may lead to the adaptive expression of defensive behaviors, even in animals that are not in the presence of predators.


Avoidance Learning/drug effects , Basolateral Nuclear Complex/drug effects , Fear/drug effects , Ketones/administration & dosage , Prefrontal Cortex/drug effects , Acoustic Stimulation/methods , Administration, Inhalation , Animals , Avoidance Learning/physiology , Basolateral Nuclear Complex/physiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Fear/psychology , Male , Neural Pathways/drug effects , Prefrontal Cortex/physiology , Rats
12.
Neurol Res ; 43(12): 1087-1097, 2021 Dec.
Article En | MEDLINE | ID: mdl-34233602

OBJECTIVES: This study explored the possible role of orexin one receptors (Orx1R) in the basolateral amygdala (BLA) on the modulation of nitroglycerin (NTG)-induced migraine-like symptoms. In addition, pain-induced subsequent alteration in learning and memory competence was evaluated in the adult male Wistar rats. METHODS: The rats were given NTG (5 mg/kg, i.p.) every two days (for nine-day) to induce a migraine-like state. The migraine animals were treated with intra-BLA infusion of an Orx1R antagonist SB 334,867 (10, 20, and 40 nM/rat) or its vehicle DMSO. The NTG-induced migraine symptoms were recorded for 90 min. Spatial and passive avoidance performances were assessed by Morris water maze (MWM) and shuttle box tasks, respectively. RESULTS: In comparison with control, NTG produced significant migraine-like symptoms characterized by a decrease in cage climbing and an increase in head-scratching, freezing, and facial grooming behavior. Intra-BLA infusion of SB 334,867 (40 nM/rat) significantly decreased cage climbing and increased facial grooming responses in NTG-treated rats. Moreover, all administrated doses of SB 334,867 increased NTG-evoked head-scratching and freezing behavior. Besides, NTG impaired learning and memory performances in both tests, which were exaggerated by post-injection of SB 334,867 (40 nM/rat). CONCLUSIONS: Overall, the data provided an emerging role for the orexin system within BLA in the modulation of cognitive decline comorbid with migraine in rats.


Basolateral Nuclear Complex/metabolism , Cognitive Dysfunction/metabolism , Migraine Disorders/metabolism , Orexin Receptors/metabolism , Animals , Basolateral Nuclear Complex/drug effects , Benzoxazoles/pharmacology , Cognitive Dysfunction/etiology , Male , Migraine Disorders/complications , Naphthyridines/pharmacology , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/drug effects , Rats , Rats, Wistar , Urea/analogs & derivatives , Urea/pharmacology
13.
Neurobiol Learn Mem ; 183: 107485, 2021 09.
Article En | MEDLINE | ID: mdl-34216787

Second-order fear conditioning has been demonstrated in protocols using discrete and simple stimuli, and much is now known about its behavioral and neural characteristics. In contrast, the mechanisms of second-order conditioning to more complex stimuli, such as contexts, are unknown. To address this gap in our knowledge, we conducted a series of experiments to investigate the neural and behavioral characteristics of second-order context fear conditioning in rats. We found that rats acquire fear to a context in which a first-order conditioned stimulus is presented (Experiment 1); neuronal activity in the basolateral amygdala (BLA) is required for the acquisition (Experiment 2) and extinction (Experiment 3) of second-order context fear; second-order context fear can be reduced by extinction of its first-order conditioned stimulus associate (Experiment 4); and that second-order fear reduced in this way is restored when fear of the first-order conditioned stimulus spontaneously recovers or is reconditioned (Experiment 5). Thus, second-order context fear requires neuronal activity in the BLA, and once established, tracks the level of fear to its first-order conditioned stimulus-associate. These results are discussed with respect to the substrates of second-order fear conditioning in other protocols, and the role of the amygdala in different forms of conditioning.


Basolateral Nuclear Complex/physiology , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear , Amygdala/drug effects , Amygdala/physiology , Animals , Basolateral Nuclear Complex/drug effects , Conditioning, Classical/drug effects , Extinction, Psychological/drug effects , Female , GABA-A Receptor Agonists/pharmacology , Muscimol/pharmacology , Rats
14.
Neuropharmacology ; 196: 108705, 2021 09 15.
Article En | MEDLINE | ID: mdl-34246684

Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not known how blockade of GABAB receptors in the region affects anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to hyperactivity of LHb neurons and decreased the level of extracellular dopamine (DA) in the basolateral amygdala (BLA) compared to sham-lesioned rats. Intra-LHb injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both groups. Further, intra-LHb injection of CGP36216 decreased the firing rate of the neurons, and increased the GABA/glutamate ratio in the LHb and release of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 increased the firing rate of the neurons and decreased the GABA/glutamate ratio and release of DA and 5-HT in sham-lesioned and the lesioned rats. However, the doses of the antagonists producing these behavioral effects in the lesioned rats were lower than those in sham-lesioned rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in the lesioned rats. Collectively, these findings suggest that pre-synaptic and post-synaptic GABAB receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway up-regulates function and/or expression of these receptors.


Anxiety/metabolism , Basolateral Nuclear Complex/metabolism , GABA-B Receptor Antagonists/pharmacology , Habenula/metabolism , Parkinsonian Disorders/metabolism , Receptors, GABA-B/metabolism , Receptors, Presynaptic/metabolism , Animals , Anxiety/physiopathology , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiopathology , Behavior, Animal/drug effects , Dopamine/metabolism , Habenula/drug effects , Habenula/physiopathology , Organophosphorus Compounds/pharmacology , Oxidopamine/toxicity , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/psychology , Pars Compacta , Phosphinic Acids/pharmacology , Rats , Receptors, Presynaptic/antagonists & inhibitors , Serotonin/metabolism , Up-Regulation
15.
Addict Biol ; 26(6): e13048, 2021 11.
Article En | MEDLINE | ID: mdl-33973711

The process through which early memories are transferred to the cerebral cortex to form long-term memories is referred to as memory consolidation, and the basolateral amygdala (BLA) is an important brain region involved in this process. Although functional connections between the BLA and multiple brain regions are critical for the consolidation of withdrawal memory, whether the projection from the BLA to the anterior cingulate cortex (ACC) is involved in the formation or consolidation of withdrawal memory remains unclear. In this paper, we used a chemical genetic method to specifically label the BLA-ACC projection in a combined morphine withdrawal and conditioned place aversion (CPA) animal model. We found that (1) the inhibition of the BLA-ACC projection during conditioning had no effects on the formation of early withdrawal memory; (2) the inhibition of the BLA-ACC projection had no effects on the retrieval of either early or long-term withdrawal memory; and (3) the persistent inhibition of the BLA-ACC projection after early withdrawal memory formation could inhibit the formation of long-term withdrawal memory and decrease Arc protein expression in the ACC. These results suggested that the persistent activation of the BLA-ACC projection after the formation of early withdrawal memory facilitates the formation of long-term withdrawal memory by increasing the plasticity of ACC neurons.


Basolateral Nuclear Complex/drug effects , Gyrus Cinguli/drug effects , Memory Consolidation/drug effects , Morphine/pharmacology , Narcotic-Related Disorders/physiopathology , Animals , Gyrus Cinguli/metabolism , Male , Memory Consolidation/physiology , Memory, Long-Term/physiology , Mice , Mice, Inbred C57BL
16.
Neurosci Lett ; 756: 135939, 2021 06 21.
Article En | MEDLINE | ID: mdl-33945805

The basolateral amygdala (BLA) plays a crucial role in conditioned place preference (CPP) for addictive drugs. However, neural signaling associated with methamphetamine (METH) craving and seeking remained to be investigated. This study characterized local field potential (LFP) oscillatory patterns in the BLA and conditioned place preference induced by METH-related context. Male Swiss albino ICR mice were deeply anesthetized for LFP intracranial electrode implantation in the BLA. Control and METH groups received sessions to learn to associate saline-paired and METH-paired compartments of the CPP apparatus with saline and METH injections, respectively, for 10 days. LFP signals and exploring behavior were recorded simultaneously during pre- and post-conditioning phases. Time spent in METH-paired compartment was normalized and expressed as CPP scores. Fast Fourier Transform (FFT) algorithm was used to analyze LFP powers of 8 discrete frequency ranges (delta, theta, alpha, beta, gamma I-IV). During post-conditioning phase of METH CPP with METH cues, statistical analysis revealed that METH group significantly increased time spent in METH-paired compartment. Significant suppressions of theta and alpha powers were observed. Phase-amplitude cross frequency coupling analyses confirmed significant increases in maximal modulation index (MI), frequency for phase of slow wave and MI of theta-gamma II coupling. Taken together, LFP oscillation in the BLA was sensitive in association with METH CPP. These research findings might suggest the underlying mechanisms of drug reward learning and adaptive changes in the BLA in acquisition of METH CPP and dependence.


Action Potentials/drug effects , Basolateral Nuclear Complex/drug effects , Brain Waves/drug effects , Central Nervous System Stimulants/administration & dosage , Conditioning, Operant/drug effects , Methamphetamine/administration & dosage , Animals , Exploratory Behavior/drug effects , Extinction, Psychological/drug effects , Male , Mice
17.
Sci Rep ; 11(1): 8749, 2021 04 22.
Article En | MEDLINE | ID: mdl-33888757

The hippocampus, particularly its ventral domain, can promote negative affective states (i.e. stress and anxiety) that play an integral role in the development and persistence of alcohol use disorder (AUD). The ventral hippocampus (vHC) receives strong excitatory input from the basolateral amygdala (BLA) and the BLA-vHC projection bidirectionally modulates anxiety-like behaviors. However, no studies have examined the effects of chronic alcohol on the BLA-vHC circuit. In the present study, we used ex vivo electrophysiology in conjunction with optogenetic approaches to examine the effects of chronic intermittent ethanol exposure (CIE), a well-established rodent model of AUD, on the BLA-vHC projection and putative intrinsic vHC synaptic plasticity. We discovered prominent BLA innervation in the subicular region of the vHC (vSub). CIE led to an overall increase in the excitatory/inhibitory balance, an increase in AMPA/NMDA ratios but no change in paired-pulse ratios, consistent with a postsynaptic increase in excitability in the BLA-vSub circuit. CIE treatment also led to an increase in intrinsic network excitability in the vSub. Overall, our findings suggest a hyperexcitable state in BLA-vSub specific inputs as well as intrinsic inputs to vSub pyramidal neurons which may contribute to the negative affective behaviors associated with CIE.


Basolateral Nuclear Complex/drug effects , Ethanol/pharmacology , Hippocampus/drug effects , Alcoholism/physiopathology , Animals , Basolateral Nuclear Complex/physiology , Ethanol/administration & dosage , Hippocampus/physiology , Male , Neuronal Plasticity/drug effects , Optogenetics , Rats , Rats, Long-Evans , Synaptic Transmission/drug effects
18.
Behav Brain Res ; 409: 113313, 2021 07 09.
Article En | MEDLINE | ID: mdl-33891976

MK-801 (dizocilpine) is a potent non-competitive N-methyl-[D]-aspartate (NMDA) receptor antagonist that affects cognitive function, learning, and memory. As we know, NMDA receptors are significantly involved in memory function, as well as GABA (Gamma-Aminobutyric acid) receptors. In this study, we aimed to discover the effect of GABA-B receptors in the basolateral amygdala (BLA) on MK-801-induced memory impairment. We used 160 male Wistar rats. The shuttle box was used to evaluate passive avoidance memory and locomotion apparatus was used to evaluate locomotor activity. MK-801 (0.125, 0.25, and 0.5 µg/rat), baclofen (GABA-B agonist, 0.0001, 0.001, and 0.01 µg/rat) and phaclofen (GABA-B antagonist, 0.0001, 0.001, and 0.01 µg/rat) were injected intra-BLA, after the training. The results showed that MK-801 at the dose of 0.5 µg/rat, baclofen at the doses of 0.001 and 0.01 µg/rat, and phaclofen at the doses of 0.001 and 0.01 µg/rat, impaired passive avoidance memory. Locomotor activity did not alter in all groups. Furthermore, the subthreshold dose of both baclofen (0.0001 µg/rat) and phaclofen (0.0001 µg/rat) restored the impairment effect of MK-801 (0.5 µg/rat) on memory. Also, both baclofen (0.0001 µg/rat) potentiated the impairment effect of MK-801 (0.125 µg/rat) and phaclofen (0.0001 µg/rat) potentiated the impairment effect of MK-801 (0.125 and 0.25 µg/rat) on passive avoidance memory. In conclusion, our results indicated that BLA GABA-B receptors can alter the effect of NMDA inactivation on passive avoidance memory.


Avoidance Learning/drug effects , Basolateral Nuclear Complex/drug effects , Behavior, Animal/drug effects , Excitatory Amino Acid Antagonists/pharmacology , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Antagonists/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Baclofen/analogs & derivatives , Baclofen/pharmacology , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , GABA-B Receptor Agonists/administration & dosage , GABA-B Receptor Antagonists/administration & dosage , Male , Rats , Rats, Wistar
19.
Neuropharmacology ; 188: 108512, 2021 05 01.
Article En | MEDLINE | ID: mdl-33667523

Adolescent alcohol exposure is associated with many consequences in adulthood, including altered affective and reward-related behaviors. However, the long-term neurological disruptions underlying these behaviors are not fully understood. Shifts in the excitatory/inhibitory balance in the basolateral amygdala (BLA) relate to the expression of these behaviors and changes to BLA physiology are seen during withdrawal immediately following adolescent ethanol exposure, but no studies have examined whether these changes persist long-term. The kappa opioid receptor (KOR) neuromodulatory system mediates negative affective behaviors, and alterations of this system are implicated in behavioral changes following adult and adolescent chronic ethanol exposure. In the BLA, the KOR system undergoes functional changes across development, but whether BLA KOR function is disrupted by adolescent ethanol exposure is unknown. In this study, male and female Sprague-Dawley rats were exposed to a vapor model of moderate adolescent chronic intermittent ethanol (aCIE) and assessed for long-term effects on GABAergic and glutamatergic neurotransmission within the adult BLA and KOR modulation of these systems. aCIE exposure increased presynaptic glutamate transmission in females but had no effect in males or on GABA transmission in either sex. Additionally, aCIE exposure disrupted male KOR modulation of GABA release, with no effects in females or on glutamate transmission. These data suggest that aCIE produces sex-dependent and long-term changes to BLA physiology and KOR function. This is the first study to examine these persistent adaptations following adolescent alcohol exposure and opens a broad avenue for future investigation into other adolescent ethanol-induced disruptions of these systems.


Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Ethanol/pharmacology , Receptors, Opioid, kappa/metabolism , Sex Factors , Synaptic Transmission/drug effects , Animals , Excitatory Postsynaptic Potentials/drug effects , Female , Glutamic Acid/metabolism , Male , Rats , Rats, Sprague-Dawley , Substance Withdrawal Syndrome/physiopathology
20.
Brain Res ; 1762: 147425, 2021 07 01.
Article En | MEDLINE | ID: mdl-33737065

The amygdala plays a crucial role in anxiety-related behavior and various neuropsychiatric disorders. The offspring of dams, administered methylazoxymethanol acetate (MAM) intraperitoneally at gestational day 15, exhibit micrencephaly and anxiety-related behavior, such as hyperactivity in rearing and crossing behavior, alongside a distinct Fos expression profile in the basolateral (BLA) and central amygdala. However, the histochemical underpinnings of these changes remain to be elucidated. To determine the histochemical alterations in MAM-induced model rats, we performed Nissl staining, immunohistochemistry for parvalbumin (PV) or calbindin (Calb), and immunohistochemistry for PV in conjunction with in situ hybridization for glutamate decarboxylase (GAD). We compared immunoreactivity in the BLA between normal and MAM-induced model rats and observed a significant decrease in the number of PV-positive neurons in MAM-induced model rats; however, no significant differences in the number of Nissl- and Calb-positive neurons were observed. We did not detect any significant between-group differences with regards to the effects of environmental enrichment on the number of PV-positive neurons in the BLA. Double-labeling for GAD and PV revealed that many PV-positive neurons colocalized with digoxigenin-GAD65/67 signals. In addition, GAD/PV double-positive neurons and the total number of GAD-positive neurons in the BLA were lower in the MAM-induced model rats. These results indicate that histochemical alterations observed in the BLA of the MAM-induced model rats may attribute to an aberrant GABAergic inhibitory system.


Basolateral Nuclear Complex/metabolism , GABAergic Neurons/metabolism , Interneurons/metabolism , Methylazoxymethanol Acetate/analogs & derivatives , Microcephaly/metabolism , Parvalbumins/metabolism , Animals , Basolateral Nuclear Complex/chemistry , Basolateral Nuclear Complex/drug effects , Carcinogens/toxicity , Female , GABAergic Neurons/chemistry , GABAergic Neurons/drug effects , Interneurons/chemistry , Interneurons/drug effects , Male , Methylazoxymethanol Acetate/toxicity , Microcephaly/chemically induced , Microcephaly/psychology , Parvalbumins/analysis , Pregnancy , Rats , Rats, Sprague-Dawley
...